Seat	og sensiale sein
No.	And manipulation

Total No. of Pages: 4

S.E. (Civil Engineering) (Part - II) (Semester - IV) Examination, December - 2015 CONCRETE TECHNOLOGY

Sub. Code: 45539

-	nd Date : Saturday, 19 -12 - 2015. : 02.30 p.m. to 05.30 p.m.	Total Marks: 100
	ctions: 1) All questions are compulsory.	Tam Available
Histit	2) Figures to the right indicate full marks.	Sand: Cone
	3) Assume suitable data if necessary.	
	The same of the same of the same of the same of the same	
	SECTION - I	
		nimically
Q1)	a) Explain the various tests for physical properties of	cement. [8]
	What do you mean by gap graded aggregate? Exp	plain its important
	feature.	[8]
	0.50 0.48 0.46 0.44 (331-51)	
Q2)	a) Define curing and describe the different method of	curing. [8]
	Explain measurement of workability of concrete us	sing. $[8]$
	i) Compaction factor method	
	ii) Vee- bee consistometer method	
	OR	
	What are defferent types of admixture used in concrete	? Explain in detail
	effect of super-plasticizer on concrete?	[8]
	Ca.U (Ca.U 16.0 U	
Q3)	a) Explain the relation between the strength and wat	er-cement ratio of
	concrete.	[9]
	Explain factors affecting the modulus of elasticity of	of concrete. [9]
	SECTION - II	
		Amazonz
Q4)	Write short notes (any three).	[18]
	n) No-fines Concrete	
	o) Shotcreting	
	c) Fibre Reinforced Concrete	
	d) Cold Weather Concreting	
Q5)	a) Explain effect of w/c ratio on durability and permeab	ility of concrete.[8]
	b) What do you understand by carbonation of concrete	? How is it tested?
		[8]
	OR	
	Explain use of cover meter and corrosion meter.	[8]
		P.T.O.

Q6) Design M 25 grade of concrete using the following data as per ACI 211 - 91 method: [16]

Grade of cement: 43 Grade OPC Degree of quality control: Good Maximum size of aggregate: 20 mm

Slump required: 75 mm

Fineness modulus of coarse aggregate: 6.2 Fineness modulus of fine aggregate: 3.2

Specific gravity of Coarse aggregate: 2.90; Fine aggregate: 2.78

Density of coarse aggregate: 1550 kg/m³ Density of fine aggregate: 1500 kg/m³

Sand: Zone I

Assume any other data suitably.

Table 11.4 Dry Bulk volume of Coarse Aggregate Per Unit Volume of Concrete as given by ACI 211.1 - 91

Maximum				Bulk volume of dry rodded coarse aggr				
2	Size of	Santagord p		Per unit volume of concrete for finenes				
7	Aggregate		hahany		(0'			
	F.M	2.40	2.60	2.80	3.00			
	10	0.50	0.48	0.46	0.44			
	12.5	0.59	0.57	0.55	0.53	621 31.		
	20	0.66	0.64	0.62	0.60			
	25	0.71	0.69	0.67	0.65			
455.0	40	0.75	0.73	0.71	0.69			
	50	0.78	0.76	0.74	0.72	Service 1		
	70	0.82	0.80	0.78	0.76			
	150	0.87	0.85	0.83	0.81			

Table 11.5 Relation between water/cement ratio and average compressive strength of concrete, according to ACI 211.1-91.

Average compressive	A 1 1032	Effective water/cement ratio (by mass)		
Strength at 28 days				
		Non-air	Air-entrained	
MPa		entrained concrete	concrete	
45	0.38	Atanana Carana	Part Carlo V	
40	0.43	material Fed		
35	0.48	.0.40		
10 × 30 married bins v	0.55	0.46	(i) Explain eff	
woll 25 jerongo to no	0.62	0.53	What do w	
20	0.70	0.61		
15	0.80	0.71		

Table 11.B. Approximate requirements for mixing water and air content for different work abilities and nominal maximum size of Aggregates according to ACI 211.1-91

Workability or	Wate	er content K	Ig/m² of co	oncrete for	r indicated	l maximi	um aggr	egate si
Aircontent	10mm	12.5 mm	20 mm	25mm	40mm	50mm	70 mm	150mm
	77		Non-a	ir entrained o	concrete		amuo	
Slump		10 101	nuls, com	stam lin it	author of	rigin W		
30-50mm	205	200	185	180	160	155	145	125
80-100mm	225	215	200	195	175	170	160	140
150-180mm	240	230	210	205	185	180	170	-
Approximate								
entrapped air	3	2.5	2	15	1	0.5	0.3	0.2
content per cent							n mi	
			Air-en	ntrained Cond	crete			
Stump							ohea .	
30-50mm	180	175	165	160	145	140	135	120
80-100mm	200	190	180	175	160	155	150	135
150-180mm	215	205	190	185	170	165	160	
Recommended								
average total							e only:	
air content percent								
MIc exposure	45	4.0	35	3.0	25	2.0	15	1.0
Moderate exposure	e 6.0	55	5.0	4.5	45	4.0	35	3.0
Extreme exposure	75	7.0	5.0	6.0	55	5.0	45	4.0
				water the later to				

Table 11.6. Requirements of ACI 318-89 for W/C ratio and Strength for Special Exposure Conditions

Expo	osure condition Maximum ratio, norm density ag concre	nal gregate	Minimum design strength, low density aggregate concrete MPa	
I	Concrete Intended to Watertight	100		
	(a) Exposed to fresh water	0.5	25	
	(b) exposed to brackish or sea water	0.45	30	
II	Concrete exposed to freezing and thawing			
	in a moist condition:			
	(a) kerbs, gutters. gaurd rails or thin sections	0.45	30	
	(b) other elements	0.50	25	
	(c) in presense of de-icing chemicals	0.45	30	
III	For corrosion protection of reinforced	0.40	33	
	concrete exposed to de-icing salts, brackish		14	
	water, sea water or spray from these sources			

Placing and Mixing condition	Degree of control	Standard Deviation MPa
Dried aggregates, completely accurate grading	Laboratory	1.3
exact water/cement ratio, controlled temperature	Precision	
curing.		
Weigh-batching of all materials, control of		
aggregate grading. 3 sizes of aggregate plus sand		minguis.
control of water added to allow for moisture content	Excellent	2.8
of aggregates, allowance for weight of aggregate		
& sand displaced by water, continual supervision		P
Weigh-batching of all materials, strict control		
of aggregate grading, control of water added to allow	High	3.5
for moisture content of aggregates, continual supervision. Weigh-batching of all materials, control of aggre-		
gate grading, control of water added, frequent super-	Very good	4.2
vision		
Weighing of all materials, water content con-		
trolled by inspection of mix, periodic check of work-	Good	5.7
ability, use of two sizes of aggregate (fine&coarse)		
only, intermittent supervision.		
Volume batching of all aggregates allowing for	Hodel in	
bulking of sand, weigh batching of cement, water	Fair	. 6.5
content controlled by inspection of mix, intermittent		
supervision.		
Volume batching of all materials, use of all in	Poor	7.0
aggregate, little or no supervision.	Uncontrolled	8.5

Table 11.9 First estimate of density (unit weight) of fresh concrete as given by ACI 211.1-91.

Maximum First estimate of density (unit weight) size of of fresh concrete				
aggregate mm	Non-air-entrained kg/m³	Air-entrained kg/m³		
10	2285	2190		
12.5	2315	2235		
20	2355	2280		
25	2375	2315		
40	2420	2355		
50	2445	2375		
70	2465	2400		
150	2505	2435		

XXXX